题目内容
【题目】如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.
(1)求证:AC∥DE;
(2)连接CD,若OA=AE=2时,求出四边形ACDE的面积.
【答案】
(1)证明:∵F为弦AC(非直径)的中点,
∴AF=CF,
∴OD⊥AC,
∵DE切⊙O于点D,
∴OD⊥DE,
∴AC∥DE
(2)证明:∵AC∥DE,且OA=AE,
∴F为OD的中点,即OF=FD,又∵AF=CF,
∠AFO=∠CFD,
∴△AFO≌△CFD(SAS),
∴S△AFO=S△CFD,
∴S四边形ACDE=S△ODE
在Rt△ODE中,OD=OA=AE=2,
∴OE=4,
∴DE= =2
∴S四边形ACDE=S△ODE= ×OD×OE= ×2×2 =2 .
【解析】(1)欲证明AC∥DE,只要证明AC⊥OD,ED⊥OD即可.(2)由△AFO≌△CFD(SAS),推出S△AFO=S△CFD , 推出S四边形ACDE=S△ODE , 求出△ODE的面积即可.
【考点精析】本题主要考查了切线的性质定理的相关知识点,需要掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能正确解答此题.
练习册系列答案
相关题目