题目内容

【题目】如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,AD=AB,AD、BC的延长线相交于点E.
(1)求证:AD是半圆O的切线;
(2)连结CD,求证:∠A=2∠CDE.

【答案】
(1)证明:连结OD,BD,

∵AB是⊙O的切线,

∴AB⊥BC,即∠ABC=90°,

∵AB=AD,

∴∠ABD=∠ADB,

∵OB=OD,

∴∠DBO=∠BDO,

∴∠ABD+∠DBO=∠ADB+∠BDO,

∴∠ADO=∠ABO=90°,

∴AD是半圆O的切线.


(2)解:由(1)知,∠ADO=∠ABO=90°,

∴∠A=360°﹣∠ADO﹣∠ABO﹣∠BOD=180°﹣∠BOD=∠DOC,

∵AD是半圆O的切线,

∴∠ODE=90°,

∴∠ODC+∠CDE=90°,

∵BC是⊙O的直径,

∴∠ODC+∠BDO=90°,

∴∠BDO=∠CDE,

∵∠BDO=∠OBD,

∴∠DOC=2∠BDO,

∴∠DOC=2∠CDE,

∴∠A=2∠CDE.


【解析】(1)连接OD,BD,根据圆周角定理得到∠ABO=90°,根据等腰三角形的性质得到∠ABD=∠ADB,∠DBO=∠BDO,根据等式的性质得到∠ADO=∠ABO=90°,根据切线的判定定理即可得到即可;(2)由AD是半圆O的切线得到∠ODE=90°,于是得到∠ODC+∠CDE=90°,根据圆周角定理得到∠ODC+∠BDO=90°,等量代换得到∠DOC=2∠BDO,∠DOC=2∠CDE即可得到结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网