题目内容
【题目】已知∠PAQ=36°,点B为射线AQ上一固定点,按以下步骤作图:①分别以A,B为圆心,大于AB的长为半径画弧,相交于两点M,N;②作直线MN交射线AP 于点D,连接 BD;③以B为圆心,BA长为半径画弧,交射线AP 于点C; 根据以上作图过程及所作图形,下列结论中错误的是( )
A.∠CDB=72°B.△ADB∽△ABCC.CD:AD=2:1D.∠ABC=3∠ACB
【答案】C
【解析】
根据垂直平分线的性质、等腰三角形的性质及判定,相似三角形的判定一一判断即可.
解:由作图可知,MN垂直平分AB,AB=BC,
∵MN垂直平分AB,
∴DA=DB,
∴∠A=∠DBA,
∵∠PAQ=36°,
∴∠CDB=∠A+∠DBA=72°,(A正确)
∵AB=BC,
∴∠A=∠ACB=36°,
∴∠ABD=∠ACB,
又∵∠A=∠A,
∴△ADB∽△ABC,(B正确)
∵∠A=∠ACB=36°,
∴∠ABC=180°-∠A-∠ACB=108°,
∴∠ABC=3∠ACB,(D正确)
∵∠ABD=36°,∠ABC=108°,
∴∠CBD=∠ABC-∠ABD=72°,
∴∠CBD=∠CDB=72°,
∴CD=BC,
∵∠A=∠ACB=36°,
∴AB=BC,
∴CD=AB,
∵AD+DB>AB,AD=DB
∴2AD>AB
∴2AD>CD,(C错误)
故选:C
练习册系列答案
相关题目