题目内容
【题目】“重庆自然博物馆”坐落在美丽的缙云山脚下,该馆现有藏品11万余件,是全国中小学生研学实践教育基地,西大附中某数学兴趣小组,想测量博物馆的高度,他们先在博物馆正对面的大楼楼顶A处,测得博物馆底部B处的俯角为50°,测得博物馆顶端C的俯角为45°,再从楼底O经过平地到达F,再沿着斜坡向上到达E,最后经过平台达到B,测得OF=20米,平台EB的长为28.8米,已知,楼OA高为60.5米,斜坡EF的坡度i=1:2.4,A、O、F、E、B、C在同一平面内,则博物馆的高约为( )米.(参考数据:tan50°≈1.2)
A.10.5B.10.0C.12.0D.12.2
【答案】B
【解析】
延长CB交OF的延长线于G,作EH⊥OG于H,延长EB交OA于N,作CM⊥OA于M,设博物馆的高BC为x米,AM=y米,根据坡度的概念用x、y表示出FH、EH,根据正切的定义列出方程,解方程得到答案.
解:延长CB交OF的延长线于G,作EH⊥OG于H,延长EB交OA于N,作CM⊥OA于M,
则四边形MNBC为矩形,
∴MC=OG,MN=BC,
设博物馆的高BC为x米,AM=y米,
则MN=x,
∵∠ACM=45°,
∴MC=AM=y,
∴ON=60.5﹣x﹣y,
则EH=ON=60.5﹣x﹣y,
∵斜坡EF的坡度i=1:2.4,
∴FH=2.4×(60.5﹣x﹣y),
∴OG=OF+FH+HG=20+2.4×(60.5﹣x﹣y)+28.8=y,
整理得,2.4x+3.4y=194,
在Rt△ABN中,tan∠ABN=,即
整理得,y=5x,
把y=5x代入2.4x+3.4y=194,得x=10,即BC=10米,
故选:B.
【题目】某课外学习小组根据学习函数的经验,对函数y=x3﹣3x的图象与性质进行了探究.请补充完整以下探索过程:
(1)列表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … | ||||
y | … | ﹣2 | m | 2 | 0 | n | 2 | … |
请直接写出m,n的值;
(2)根据上表中的数据,在平面直角坐标系内补全该函数的图象;
(3)若函数y=x3﹣3x的图象上有三个点A(x1,y1),B(x2,y2),C(x3,y3),且x1<﹣2<x2<2<x3,则y1,y2,y3之间的大小关系为 (用“<”连接);
(4)若方程x3﹣3x=k有三个不同的实数根.请根据函数图象,直接写出k的取值范围.