题目内容

【题目】如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于AB两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点

(1)求点ABC的坐标;

(2)点Mm,0)为线段AB上一点(点M不与点AB重合),过点Mx轴的垂线,与直线AC交于点E,与抛物线交于点P,过点PPQAB交抛物线于点Q,过点QQNx轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;

(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的AEM的面积

【答案】(1)A(﹣3,0),B(1,0);(2)矩形PMNQ的周长=﹣2m2﹣8m+2;(3)m=﹣2,S=.

【解析】

试题(1)利用函数图象与坐标轴的交点的求法,求出点A,B,C的坐标;

(2)先确定出抛物线对称轴,用m表示出PM,MN即可;

(3)由(2)得到的结论判断出矩形周长最大时,确定出m,进而求出直线AC解析式,即可;

试题解析:(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).

y=0,则0=﹣x2﹣2x+3,

解得,x=﹣3x=l,

A(﹣3,0),B(1,0).

(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.

M(m,0),

PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,

∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.

(3)﹣2m2﹣8m+2=﹣2(m+2)2+10,

∴矩形的周长最大时,m=﹣2.

A(﹣3,0),C(0,3),设直线AC的解析式y=kx+b,

,解得k=l,b=3,

∴解析式y=x+3,令x=﹣2,则y=1,

E(﹣2,1),

EM=1,AM=1,

S=AM×EM=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网