题目内容
【题目】已知PA,PB分别与⊙O相切于点A,B,∠APB=76°,C为⊙O上一点.
(Ⅰ)如图①,求∠ACB的大小;
(Ⅱ)如图②,AE为⊙O的直径,AE与BC相交于点D,若AB=AD.求∠EAC的大小.
【答案】(1)52°;(2)19°.
【解析】
(Ⅰ)连接OA、OB,根据切线的性质得到∠OAP=∠OBP=90°,根据四边形内角和等于360°求出∠BOA的度数,再根据圆周角定理可求出∠ACB的度数;
(Ⅱ)连接CE,根据圆周角定理得到∠ACE=90°,进而求出∠BCE和∠BAE的度数,根据等腰三角形的性质求∠ABD=∠ADB的度数,再根据三角形的外角性质计算即可.
解:(Ⅰ)如图,连接OA、OB,
∵PA,PB是⊙O的切线,
∴∠OAP=∠OBP=90°,
∴∠AOB=360°﹣90°﹣90°﹣76°=104°,
由圆周角定理得,∠ACB=∠AOB=52°;
(Ⅱ)如图,连接CE,
∵AE为⊙O的直径,
∴∠ACE=90°,
∵∠ACB=52°,
∴∠BCE=90°﹣52°=38°,
∴∠BAE=∠BCE=38°,
∵AB=AD,
∴∠ABD=∠ADB=71°,
∴∠EAC=∠ADB﹣∠ACB=71°-52°=19°.
【题目】为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩.数据如下:
收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88
整理、描述数据:
成绩/分 | 88 | 89 | 90 | 91 | 95 | 96 | 97 | 98 | 99 |
学生人数 | 2 | 1 | 3 | 2 | 1 | 2 | 1 |
数据样本数据的平均数、众数和中位数如下表
平均数 | 众数 | 中位数 |
93 |
应用数据
(1)由上表填空:________,________,________,________,
(2)根据所给数据,如果该校想确定七年级前的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为________分.
(3)根据数据分析,该校决定在七年级授予测评成绩前的学生“禁毒小卫士”荣誉称号.请估计评选该荣誉称号的最低分数,并说明理由.