题目内容
已知:如图,E为?ABCD中DC边的延长线上一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于O,连接OF,判断AB与OF的位置关系和大小关系,并证明你的结论.分析:本题可先证明△ABF≌△ECF,从而得出BF=CF,这样就得出了OF是△ABC的中位线,从而利用中位线定理即可得出线段OF与线段AB的关系.
解答:解:AB=2OF.
证明:∵四边形ABCD是平行四边形,
∴AB=CD,OA=OC.
∴∠BAF=∠CEF,∠ABF=∠ECF.
∵CE=DC,
在平行四边形ABCD中,CD=AB,
∴AB=CE.
∴在△ABF和△ECF中,
,
∴△ABF≌△ECF(ASA),
∴BF=CF.
∵OA=OC,
∴OF是△ABC的中位线,
∴AB=2OF,AB∥OF.
证明:∵四边形ABCD是平行四边形,
∴AB=CD,OA=OC.
∴∠BAF=∠CEF,∠ABF=∠ECF.
∵CE=DC,
在平行四边形ABCD中,CD=AB,
∴AB=CE.
∴在△ABF和△ECF中,
|
∴△ABF≌△ECF(ASA),
∴BF=CF.
∵OA=OC,
∴OF是△ABC的中位线,
∴AB=2OF,AB∥OF.
点评:此题主要考查了平行四边形的性质,全等三角形的性质与判定及三角形的中位线定理,综合的知识点比较多,解答本题的关键是判断出OF是△ABC的中位线.
练习册系列答案
相关题目