题目内容
如图,在平面直角坐标系中,直线
分别交
轴、
轴于
两点.点
、
,以
为一边在
轴上方作矩形
,且
.设矩形
与
重叠部分的面积为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230245476141561.png)
(1)求点
、
的坐标;
(2)当
值由小到大变化时,求
与
的函数关系式;
(3)若在直线
上存在点
,使
等于
,请直接写出
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547427915.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547443271.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547458313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547474426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547490549.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547505551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547505412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547443271.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547552563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547568663.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547552563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547583496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547599325.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230245476141561.png)
(1)求点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547630322.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547646303.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547661308.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547599325.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547661308.png)
(3)若在直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547427915.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547708341.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547724506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547739379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547661308.png)
(1)
,
.(2)当0<b≤2时,
当2<b≤4时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547802624.png)
当4<b≤6时,
④当b>6时,
.(3)
≤![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547864402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547755563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547770529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547786408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547802624.png)
当4<b≤6时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547817736.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547833439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547848408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547864402.png)
试题分析:∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547490549.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547505551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547911481.png)
∵矩形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547552563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547942678.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547958660.png)
∵点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547630322.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547646303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547755563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547770529.png)
由题意,可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548036609.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548051563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548051679.png)
①当0<b≤2时,如图1,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547786408.png)
②当2<b≤4时,如图2,设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548082403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548098409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548114324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548129638.png)
在Rt△AGC中,∵tan∠BAO=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548160686.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548176584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230245481923345.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230245482073917.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548223951.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547802624.png)
当4<b≤6时,如图3,设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548082403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548254390.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548114324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548285410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548301308.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548316654.png)
在Rt△ADH中,∵tan∠BAO=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548332683.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548348548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548363577.png)
在矩形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547552563.png)
在Rt△EGH中,∵tan∠EGH=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548410711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024548426652.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230245484411117.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547817736.png)
④当b>6时,如图4,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823024547833439.png)
点评:本题难度较大,主要考查学生对一次函数和动点问题综合运用解决几何图形问题的能力。为中考常见题型,学生要牢固掌握解题技巧。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目