题目内容

【题目】如图,已知以RtABC的边AB为直径作ABC的外接圆⊙O,B的平分线BEACD,交⊙OE,过EEFACBA的延长线于F.

(1)求证:EF是⊙O切线;

(2)若AB=15,EF=10,求AE的长.

【答案】(1)证明见解析;(2)AE=3

【解析】分析: (1)要证EF是⊙O的切线,只要连接OE,再证∠FEO=90°即可;

(2)证明△FEA∽△FBA,得出AE,BF的比例关系式,勾股定理得出AE,BF的关系式,求出AE的长.

详解:

(1)证明:连接OE,

∵∠B的平分线BEACD,

∴∠CBE=ABE.

EFAC,

∴∠CAE=FEA.

∵∠OBE=OEB,CBE=CAE,

∴∠FEA=OEB.

∵∠AEB=90°,

∴∠FEO=90°.

EF是⊙O切线.

(2)解:∵AFFB=EFEF,

AF×(AF+15)=10×10.

AF=5.

FB=20.

∵∠F=F,FEA=FBE,

∴△FEA∽△FBE.

EF=10

AE2+BE2=15×15.

AE=3

点睛: 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网