题目内容

如图,在菱形ABCD中,∠DAB=60°,过点C作CE⊥AC且与AB的延长线交于点E.
求证:四边形AECD是等腰梯形.
证明:∵四边形ABCD是菱形,
∴DCAB,即DCAE,
又∵AD不平行EC,
∴四边形AECD是梯形,
∵四边形ABCD是菱形,
∵∠BAD=60°,
∴∠BAC=
1
2
∠BAD=30°
又∵CE⊥AC
∴∠E=∠BAD=60°
则梯形AECD是等腰梯形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网