题目内容
如图所示,在△ABC中,∠ACB为直角,∠CAD的角平分线交BC的延长线于点E,若∠B=35°,求∠BAE和∠E的度数.
∵△ABC中,∠ACB为直角,∠B=35°,
∴∠BAC=180°-90°-35°=55°,
∴∠CAD=180°-∠BAC=180°-55°=125°,
∵AE是∠CAD的平分线,
∴∠CAE=
∠CAD=
×125°=62.5°,
∴∠BAE=∠BAC+∠CAE=55°+62.5°=117.5°,∠E=90°-∠CAE=90°-62.5°=27.5°.
∴∠BAC=180°-90°-35°=55°,
∴∠CAD=180°-∠BAC=180°-55°=125°,
∵AE是∠CAD的平分线,
∴∠CAE=
1 |
2 |
1 |
2 |
∴∠BAE=∠BAC+∠CAE=55°+62.5°=117.5°,∠E=90°-∠CAE=90°-62.5°=27.5°.
练习册系列答案
相关题目