题目内容
【题目】如图,如图为边长为a的大正方形中有一个边长为b的小正方形,如图是由如图中阴影部分拼成的一个长方形.
(1)设如图中阴影部分面积为S1,如图中阴影部分面积为S2,请用含a、b的代数式表示: ____ __, ___ ___(只需表示,不必化简);
(2)以上结果可以验证哪个乘法公式?
请写出这个乘法公式__ ____;
(3)利用(2)中得到的公式,
计算:.
【答案】(1) , ;(2);(3)1.
【解析】
(1)求出大正方形及小正方形的面积,作差即可得出阴影部分的面积;图2所示的长方形的长和宽分别为(a+b)、(a-b),由此可计算出面积;
(2)根据阴影部分的面积相等可得出平方差公式;
(3)利用平方差公式计算即可.
(1)大正方形的面积为a2,小正方形的面积为b2,
故图1阴影部分的面积值为a2-b2;
长方形的长和宽分别为(a+b)、(a-b),
故图2重拼的长方形的面积为(a+b)(a-b);
(2)比较上面的结果,都表示同一阴影的面积,它们相等,
即(a+b)(a-b)=a2-b2,可以验证平方差公式,这也是平方差公式的几何意义;
故答案为:(a+b)(a-b)=a2-b2;
(3)20172-2018×2016
=20172-(2017+1)(2017-1)
=20172-(20172-1)
=20172-20172+1
=1.
练习册系列答案
相关题目