题目内容
【题目】如图,在△ABC中,D是BC的中点,过点D的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥DF交AB于点E,连接EG、EF.
(1)求证:BG=CF;
(2)求证:EG=EF;
(3)请你判断BE+CF与EF的大小关系,并证明你的结论.
【答案】
(1)证明:∵BG∥AC,
∴∠C=∠GBD,
∵D是BC的中点,
∴BD=DC,
在△CFD和△BGD中
∴△CFD≌△BGD,
∴BG=CF.
(2)证明:∵△CFD≌△BGD,
∴DG=DF,
∵DE⊥GF,
∴EG=EF
(3)BE+CF>EF,
证明:∵△CFD≌△BGD,
∴CF=BG,
在△BGE中,BG+BE>EG,
∵由(2)知:EF=EG,
∴BG+CF>EF
【解析】(1)求出∠C=∠GBD,BD=DC,根据ASA证出△CFD≌△BGD即可.(2)根据全等得出GD=DF,根据线段垂直平分线性质得出即可.(3)根据全等得出BG=CF,根据三角形三边关系定理求出即可.
练习册系列答案
相关题目