题目内容
【题目】如图,在△ABC中,∠ACB=90°,AC=8,BC=6.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下方,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).
(1)求线段CD的长;
(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;
(3)当点P在线段AD上运动时,求S与t的函数关系式.
【答案】(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时,S=2;当<t≤时,S=-t2+t-.
【解析】
(1)由勾股定理得出AB=,由△ABC的面积得出ACBC=ABCD,即可得出CD的长;
(2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似三角形的性质求解即可.
(3)首先求出点Q落在AC上的运动时间t,再分三种情形:①当0<t<时,重叠部分是矩形PHYN,如图4所示,②当≤t≤时,重合部分是矩形PQMN,S=PQPN=2.③当<t≤时,如图5中重叠部分是五边形PQMJI,分别求解即可.
(1)∵∠ACB=90°,AC=8,BC=6,
∴AB=,
∵S△ABC=ACBC=ABCD,
∴ACBC=ABCD,即:8×610×CD,
∴CD=;
(2)在Rt△ADC中,AD=,BD=AB-AD=10-=,
当点N在线段CD上时,如图1所示:
∵矩形PQMN,PQ总保持与AC垂直,
∴PN∥AC,
∴∠NPD=∠CAD,
∵∠PDN=∠ADC,
∴△PDN∽△ADC,
∴,即:,
解得:PD=,
∴t=AD-PD=,
当点Q在线段CD上时,如图2所示:
∵PQ总保持与AC垂直,
∴PQ∥BC,△DPQ∽△DBC,
∴,即:,
解得:DP= ,
∴t=AD+DP=,
∴当矩形PQMN与线段CD有公共点时,t的取值范围为≤t≤;
(3)当Q在AC上时,如图3所示:
∵PQ总保持与AC垂直,
∴PQ∥BC,△APQ∽△ABC,
∴,即:,
解得:AP= ,
当0<t<时,重叠部分是矩形PHYN,如图4所示:
∵PQ∥BC,
∴△APH∽△ABC,
∴,即:,
∴PH=,
∴S=PHPN=;
当≤t≤时,重合部分是矩形PQMN,S=PQPN=2.
当<t≤时,如图5中重叠部分是五边形PQMJI,
S=S矩形PNMQ-S△JIN=2- (t-)[1-(-t)]=-t2+t-.