题目内容
【题目】如图1,在平画直角坐标系中,直线交轴于点,交轴于点,将直线沿轴向右平移2个单位长度交轴于,交轴于,交直线于.
(1)直接写出直线的解析式为______,______.
(2)在直线上存在点,使是的中线,求点的坐标;
(3)如图2,在轴正半轴上存在点,使,求点的坐标.
【答案】(1),22;(2);(3)
【解析】
(1)根据平移规律“上加下减、左加右减”进行计算可得到平移后的解析式,再分别求出A,B,C的坐标,即可计算出22;
(2)作轴于,轴于,易得,则,
再将x=4代入得到y=11,所以;
(3)在轴正半轴上取一点,使,由外角性质和等腰三角形的性质得出,再用勾股定理求得OP的长,即可得出答案.
解:(1)直线沿x轴向右平移2个单位长度,则
y=-2(x-2)-7
=-2x-3
将和联立,得
解得
易得
故答案为:,22;
(2)作轴于,轴于,
∵
∴,,
∵为的中线,
∴,
∵,
∴,
∴,
在中,
当时,,
∴.
(3)由(1)得,,
∴, ,
在轴正半轴上取一点,使,
∵,
∴,
∴,
∵,
∴,
∴,
在中,由勾股定理可得:,
∴.
练习册系列答案
相关题目