题目内容
【题目】(1)如图1,已知正方形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,求证:EF=GH;
(2)如图2,若将“正方形ABCD”改为“菱形ABCD”,其他条件不变,探索线段EF与线段GH的关系并加以证明;
(3)如图3,若将“正方形ABCD”改为“矩形ABCD”,且AD=mAB,其他条件不变,探索线段EF与线段GH的关系并加以证明;
附加题:根据前面的探究,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题,画出图形,并证明,若不能,说明理由.
【答案】(1)证明见解析;(2)EF=GH;证明见解析;(3);证明见解析;
附加题:能;证明见解析;
【解析】
(1)过点F作FM⊥AD于M,过点G作GN⊥CD于N,易证△GNH≌△FME,根据全等三角形的性质即可证得结论;(2)EF=GH,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,证明△GNH≌△FME,,根据全等三角形的性质即可证得结论;(3)过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,证明△GNH∽△FME,根据相似三角形的性质即可证得结论;附加题:如图,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,证明△GNH∽△FME,根据相似三角形的性质及(3)的结论即可求解.
(1)如图1,过点F作FM⊥AD于M,过点G作GN⊥CD于N,
则FM=GN=AD=BC,且GN⊥FM,设它们的垂足为Q,设EF、GN交于R
∵∠GOF=∠A=90°,
∴∠OGR=90°﹣∠GRO=90°﹣∠QRF=∠OFM.
∵∠GNH=∠FME=90°,FM=GN,
∴△GNH≌△FME.
∴EF=GH.
(2)如图2,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,
在四边形MQND中,∠QMD=∠QND=90°
∴∠ADC+∠MQN=180°.
∴∠MQN=∠A=∠GOF.
∵∠ORG=∠QRF,
∴∠HGN=∠EFM.
∵∠A=∠C,AB=BC,
∴FM=ABsinA=BCsinC=GN.
∵∠FEM=∠GNH=90°,
∴△GNH≌△FME.
∴EF=GH.
(3)如图3,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,
∵∠GOF=∠A=90°,
∴∠OGR=90°﹣∠GRO=90°﹣∠QRF=∠OFM.
∵∠GNH=∠FME=90°,
∴△GNH∽△FME.
∴.
∵GN=AD,FM=AB,AD=mAB,
∴.
附加题:
已知平行四边形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,AD=mAB,则GH=mEF.
证明:如图,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,
在四边形MQND中,∠QMD=∠QND=90°,
∴∠MDN+∠MQN=180°.
∴∠MQN=∠A=∠GOF.
∵∠ORG=∠QRF,
∴∠HGN=∠EFM.
∵∠FME=∠GNH=90°,
∴△GNH∽△FME.
∴=m.
即GH=mEF.