题目内容

如图,正方形ABCD的边长是2,M是AD的中点,点E从点A出发,沿AB运动到点B停止,连接EM并延精英家教网长交射线CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG.
(1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(2)P是MG的中点,请直接写出点P的运动路线的长.
分析:(1)①E、A重合时,三角形EFG的底和高都等于正方形的边长,由此可得到其面积;
②E、A不重合时;易证得△AEM≌△FDM,则EM=FM,由勾股定理易求得EM的长,即可得出EF的长;下面求MG的长,过M作MN⊥BC于N,则AB=MN=2AM,由于∠AME和∠NMG同为∠EMN的余角,由此可证得△AEM∽△NGM,根据相似三角形得到的关于AM、MN、EM、MG的比例关系式,即可求得MG的表达式,进而可由三角形的面积公式求出y、x的函数关系式;
(2)可分别作出E、A重合和E、B重合时P点的位置(即P为A与E重合时得到的对应点,P′为E与B重合时的对应点),此时可发现PP′正好是△EGG′的中位线,则P点运动的距离为GG′的一半;Rt△BMG′中,MG⊥BG′,易证得∠MBG=∠GMG′,根据∠MBG的正切值即可得到GG′、GM(即正方形的边长)的比例关系,由此得解.
解答:精英家教网解:(1)当点E与点A重合时,x=0,y=
1
2
×2×2=2
当点E与点A不重合时,0<x≤2
在正方形ABCD中,∠A=∠ADC=90°
∴∠MDF=90°,∴∠A=∠MDF
在△AME和△DMF中
∠A=∠MDF
AM=DM
∠AME=∠DMF

∴△AME≌△DMF(ASA)
∴ME=MF
在Rt△AME中,AE=x,AM=1,ME=
x2+1

∴EF=2ME=2
x2+1

过M作MN⊥BC,垂足为N(如图)
则∠MNG=90°,∠AMN=90°,MN=AB=AD=2AM
∴∠AME+∠EMN=90°
∵∠EMG=90°
∴∠GMN+∠EMN=90°
∴∠AME=∠GMN
∴Rt△AME∽Rt△NMG
AM
NM
=
ME
MG
,即
ME
MG
=
1
2

∴MG=2ME=2
x2+1

∴y=
1
2
EF×MG=
1
2
×2
x2+1
×2
x2+1
=2x2+2
∴y=2x2+2,其中0≤x≤2;(6分)

(2)如图,PP′即为P点运动的距离;精英家教网
在Rt△BMG′中,MG⊥BG′;
∴∠MBG=∠G′MG=90°-∠BMG;
∴tan∠MBG=
MG
BG
=2,
∴tan∠GMG′=tan∠MBG=
GG′
MG
=2;
∴GG′=2MG=4;
△MGG′中,P、P′分别是MG、MG′的中点,
∴PP′是△MGG′的中位线;
∴PP′=
1
2
GG′=2;
即:点P运动路线的长为2.(8分)
点评:此题考查了正方形的性质,等腰三角形、相似三角形、全等三角形的判定和性质以及二次函数等知识;综合性强,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网