题目内容

【题目】如图,在平面直角坐标系中,正方形ABCD的对角线ACBD交于点E,其中点A(1,1),B(5,1),C(5,5),D(1,5).一个口袋中装有5个完全相同的小球,上面分别标有数字1,2,3,4,5,搅匀后从中摸出一个小球,把球上的数字作为点P的横坐标,放回后再摸出一个小球,将球上数字作为点P的纵坐标,求点P落在阴影部分(含边界)的概率.

【答案】

【解析】试题分析:列举出所有情况,让P点落在阴影部分(含边界)的情况数除以总情况数即为所求的概率.

试题解析:列表得:

∴共有25种情况,
根据题意:直线AC与BD的解析式为
y=x与y=-x+6
当x=1时,均可;
当x=2时,(2,2)、(2,3)(2,4)可以;
当x=3时,(3,3)可以;
当x=4时,(4,2)、(4,3)、(4,4)可以;
当x=5时,均可;
∴P点落在阴影部分(含边界)的有17种;
∴P点落在阴影部分(含边界)的概率是

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网