题目内容
【题目】知识链接:将两个含30°角的全等三角尺放在一起,让两个30°角合在一起成60°,经过拼凑、观察、思考,探究出“直角三角形中30°角所对的直角边等于斜边的一半”结论.
如图:等边三角形ABC的边长为4cm,点D从点C出发沿CA向A运动,点E从B出发沿AB的延长线BF向右运动,已知点D、E都以每秒0.5cm的速度同时开始运动,运动过程中DE与BC相交于点P,设运动时间为x秒.
(1)请直接写出AD长.(用x的代数式表示)
(2)当△ADE为直角三角形时,运动时间为几秒?
(2)求证:在运动过程中,点P始终为线段DE的中点.
【答案】(1)AD=4-0.5x;(2);(3)证明见解析.
【解析】试题分析:(1)直接根据AD=AC-CD求解;(2)设x秒时,△ADE为直角三角形,分别用含x的式子表示出AD和AE,再根据Rt△ADE中30°角所对的直角边等于斜边的一半得出x的方程,求解即可;(3)作DG∥AB交BC于点G,证△DGP≌△EBP便可得.
解:(1)由AC=4,CD=0.5x,得AD=AC-CD=4-0.5x;
(2)∵△ABC是等边三角形,
∴AB=BC=AC=4cm,∠A=∠ABC=∠C=60°.
设x秒时,△ADE为直角三角形,
∴∠ADE=90°,CD=0.5x,BE=0.5x,AD=4-0.5x,AE=4+0.5x,
∴∠AED=30°,∴AE=2AD,
∴4+0.5x=2(4-0.5x),∴x=.
答:运动秒后,△ADE为直角三角形;
(3)作DG∥AB交BC于点G,
∴∠GDP=∠BEP,∠CDG=∠A=60°,∠CGD=∠ABC=60°,
∴∠C=∠CDG=∠CGD,
∴△CDG是等边三角形,∴DG=DC,
∵DC=BE,∴DG=BE.
在△DEP和△EBP中,∠GDP=BEP,∠DPG=∠EPB,DG=EB,
∴△DGP≌△EBP,∴DP=PE.
∴在运动过程中,点P始终为线段DE的中点.