题目内容

【题目】知识链接将两个含30°角的全等三角尺放在一起让两个30°角合在一起成60°经过拼凑、观察、思考探究出“直角三角形中30°角所对的直角边等于斜边的一半”结论

如图等边三角形ABC的边长为4cmD从点C出发沿CAA运动EB出发沿AB的延长线BF向右运动已知点DE都以每秒0.5cm的速度同时开始运动运动过程中DEBC相交于点P设运动时间为x

1)请直接写出AD长.(用x的代数式表示)

2)当△ADE为直角三角形时运动时间为几秒?

2)求证在运动过程中P始终为线段DE的中点

【答案】1AD=4-0.5x;(2;(3)证明见解析.

【解析】试题分析:(1)直接根据AD=AC-CD求解;(2)x秒时,△ADE为直角三角形,分别用含x的式子表示出AD和AE,再根据Rt△ADE中30°角所对的直角边等于斜边的一半得出x的方程,求解即可;(3)DG∥ABBC于点G,△DGP≌△EBP便可得.

解:(1)由AC=4,CD=0.5x,得AD=AC-CD=4-0.5x;

(2)∵△ABC是等边三角形,

∴AB=BC=AC=4cm,∠A=∠ABC=∠C=60°.

x秒时,△ADE为直角三角形,

∴∠ADE=90°,CD=0.5x,BE=0.5x,AD=4-0.5x,AE=4+0.5x,

∴∠AED=30°,∴AE=2AD,

4+0.5x=24-0.5x),x=.

答:运动秒后,ADE为直角三角形;

(3)作DG∥ABBC于点G,

∴∠GDP=∠BEP,∠CDG=∠A=60°,∠CGD=∠ABC=60°,

∴∠C=∠CDG=∠CGD,

∴△CDG是等边三角形,∴DG=DC,

∵DC=BE,∴DG=BE.

△DEP△EBP,∠GDP=BEP,∠DPG=∠EPB,DG=EB,

∴△DGP≌△EBP,∴DP=PE.

在运动过程中,点P始终为线段DE的中点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网