题目内容
如图1,已知直线l:y=-x+2与y轴交于点A,抛物线y=(x-1)2+k经过点A,其顶点为B,另一抛物线y=(x-h)2+2-h(h>1)的顶点为D,两抛物线相交于点C.
(1)求点B的坐标,并说明点D在直线l上的理由;
(2)设交点C的横坐标为m.
①交点C的纵坐标可以表示为:______或______,由此进一步探究m关于h的函数关系式;
②如图2,若∠ACD=90°,求m的值.
(1)求点B的坐标,并说明点D在直线l上的理由;
(2)设交点C的横坐标为m.
①交点C的纵坐标可以表示为:______或______,由此进一步探究m关于h的函数关系式;
②如图2,若∠ACD=90°,求m的值.
(1)当x=0时候,y=-x+2=2,
∴A(0,2),
把A(0,2)代入y=(x-1)2+k,得1+k=2
∴k=1,
∴y=(x-1)2+1,
∴B(1,1)
∵D(h,2-h)
∴当x=h时,y=-x+2=-h+2=2-h
∴点D在直线l上;
(2)①(m-1)2+1或(m-h)2-h+2
由题意得(m-1)2+1=(m-h)2-h+2,
整理得2mh-2m=h2-h
∵h>1
∴m=
=
.
②过点C作y轴的垂线,垂足为E,过点D作DF⊥CE于点F
∵∠ACD=90°,
∴∠ACE=∠CDF
又∵∠AEC=∠DFC
∴△ACE∽△CDF
∴
=
又∵C(m,m2-2m+2),D(2m,2-2m),
∴AE=m2-2m,DF=m2,CE=CF=m
∴
=
∴m2-2m=1
解得:m=±
+1
∵h>1
∴m=
>
∴m=
+1
∴A(0,2),
把A(0,2)代入y=(x-1)2+k,得1+k=2
∴k=1,
∴y=(x-1)2+1,
∴B(1,1)
∵D(h,2-h)
∴当x=h时,y=-x+2=-h+2=2-h
∴点D在直线l上;
(2)①(m-1)2+1或(m-h)2-h+2
由题意得(m-1)2+1=(m-h)2-h+2,
整理得2mh-2m=h2-h
∵h>1
∴m=
h2-h |
2h-2 |
h |
2 |
②过点C作y轴的垂线,垂足为E,过点D作DF⊥CE于点F
∵∠ACD=90°,
∴∠ACE=∠CDF
又∵∠AEC=∠DFC
∴△ACE∽△CDF
∴
AE |
EC |
CF |
DF |
又∵C(m,m2-2m+2),D(2m,2-2m),
∴AE=m2-2m,DF=m2,CE=CF=m
∴
m2-2m |
m |
m |
m2 |
∴m2-2m=1
解得:m=±
2 |
∵h>1
∴m=
h |
2 |
1 |
2 |
∴m=
2 |
练习册系列答案
相关题目