题目内容
【题目】如图,在中,
,
厘米,
厘米,
、
是
边上的两个动点,其中点
从点
开始沿
方向运动,速度为1厘米/秒,点
从点
开始沿
方向运动,速度为2厘米/秒,若它们同时出发,设出发的时间为
秒.
(1)求出发2秒后,的长.
(2)点在
边上运动时,当
成为等腰三角形时,求点
的运动时间.
【答案】(1)cm (2)当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.
【解析】
(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;
(2)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:
①当CQ=BQ时(图1),则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;
②当CQ=BC时(图2),则BC+CQ=12,易求得t;
③当BC=BQ时(图3),过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.
解:(1)BQ=2×2=4cm,
BP=AB-AP=8-2×1=6cm,
∵∠B=90°,
PQ= (cm);
(2)解:分三种情况:
①当CQ=BQ时,如图1所示:
则∠C=∠CBQ,
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°,
∠A+∠C=90°,
∴∠A=∠ABQ
∴BQ=AQ,
∴CQ=AQ=5,
∴BC+CQ=11,
∴t=11÷2=5.5秒.
②当CQ=BC时,如图2所示:
则BC+CQ=12
∴t=12÷2=6秒.
③当BC=BQ时,如图3所示:
过B点作BE⊥AC于点E,
则BE= =4.8(cm)
∴CE= =3.6cm,
∴CQ=2CE=7.2cm,
∴BC+CQ=13.2cm,
∴t=13.2÷2=6.6秒.
由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目