题目内容

【题目】已知关于x的方程x2+(m﹣3)x﹣m(2m﹣3)=0

(1)证明:无论m为何值方程都有两个实数根;

(2)是否存在正数m,使方程的两个实数根的平方和等于26?若存在,求出满足条件的正数m的值;若不存在,请说明理由.

【答案】1见解析;(2)

【解析】试题分析:(1)求出根的判别式再根据非负数的性质即可证明

2)根据一元二次方程根与系数的关系即可求得方程两根的和与两根的积两根的平方和可以用两根的和与两根的积表示根据方程的两个实数根的平方和等于26即可得到一个关于m的方程求得m的值.

试题解析:(1)证明关于x的方程x2+m﹣3xm2m﹣3=0的判别式△=m﹣32+4m2m﹣3=9m﹣12≥0无论m为何值方程都有两个实数根

2)解设方程的两个实数根为x1x2x1+x2=m3),x1×x2=m2m3),x12+x22=26:(x1+x222x1x2=m32+2m2m3=26整理得5m212m17=0解这个方程得m= m=1所以存在正数m= 使得方程的两个实数根的平方和等于26

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网