题目内容
【题目】如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°,得到△FEC
(1)猜想AE与BF有何关系,说明理由.
(2)若△ABC的面积为3cm2,求四边形ABFE的面积.
(3)当∠ACB为多少度时,四边形ABFE为矩形?
【答案】(1)AE∥BF,AE=BF(平行四边形的对边平行且相等);
(2)S四边形ABFE=12cm2;
(3)当∠ACB=60°时,四边形ABFE为矩形.
【解析】
试题分析:(1)由△ABC绕点C顺时针旋转180°可知:AC=CF,BC=CE,四边形ABFE为平行四边形,于是得到结论;
(2)由于AC是△ABE的BE边上中线,于是得到S△ABE=2S△ABC=6,同理S△BEF=2S△CEF=6,即可得到结论;
(3)要判断四边形ABFE为矩形,从对角线来看,要求AF=BE,又AF与BE互相平分,只需要AC=BC,而AB=AC,故△ABC为等边三角形,∠ACB=60°.
试题解析:(1)AE∥BF,AE=BF.
理由是:∵△ABC绕点C顺时针旋转180°得到△FEC,
∴△ABC≌△FEC,
∴AB=FE(全等三角形的对应边相等),
∠ABC=∠FEC(全等三角形的对应角相等),
∴AB∥FE(内错角相等,两直线平行),
∴四边形ABFE为平行四边形(一组对边平行且相等的四边形是平行四边形),
∴AE∥BF,AE=BF(平行四边形的对边平行且相等);
(2)由(1)得四边形ABFE为平行四边形,
∴AC=CF,BC=CE,
∴根据等底同高得到S△ABC=S△ACE=S△BCF=S△CEF=3,
S四边形ABFE=4S△ABC=12cm2;
(3)当∠ACB=60°时,四边形ABFE为矩形.
理由是:AB=AC,∠ACB=60°,
∴△ABC是等边三角形,
∴BC=AC,∠BAC=60°,
∴∠ACE=120°.
又BC=CE,AC=CF,
∴∠EAC=∠CEA=30°,
∴∠BAE=90°,同理可证其余三个角也为直角.
∴四边形ABFE为矩形.