题目内容
如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E, 延长BC到点F,使FC
=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中正确结论
的个数为( )
①OH=BF; ②∠CHF=45°; ③GH=BC;④DH2=HE·HB
A. 1个 B. 2个 C. 3个 D. 4个
=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中正确结论
的个数为( )
①OH=BF; ②∠CHF=45°; ③GH=BC;④DH2=HE·HB
A. 1个 B. 2个 C. 3个 D. 4个
C
作EJ⊥BD于J,连接EF
①∵BE平分∠DBC∴EC=EJ,∴△DJE≌△ECF∴DE=FE
∴∠HEF=45°+22.5°=67.5°∴∠HFE==22.5°∴∠EHF=180°-67.5°-22.5°=90°
∵DH=HF,OH是△DBF的中位线∴OH∥BF∴OH=BF
②∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,
∵CE=CF,∴Rt△BCE≌Rt△DCF,∴∠EBC=∠CDF=22.5°,
∴∠BFH=90°-∠CDF=90°-22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,
∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,
∴∠HCF=90°-∠DCH=90°-22.5°=67.5°,
∴∠CHF=180°-∠HCF-∠BFH=180°-67.5°-67.5°=45°,故②正确;
③∵OH是△BFD的中位线,∴DG=CG=BC,GH=CF,∵CE=CF,∴GH=CF=CE
∵CE<CG=BC,∴GH<BC,故此结论不成立;
④∵∠DBE=45°,BE是∠DBF的平分线,∴∠DBH=22.5°,由②知∠HBC=∠CDF=22.5°,
∴∠DBH=∠CDF,∵∠BHD=∠BHD,∴△DHE∽△BHD,∴∴DH=HE•HB,故④成立;
所以①②④正确.故选C.
①∵BE平分∠DBC∴EC=EJ,∴△DJE≌△ECF∴DE=FE
∴∠HEF=45°+22.5°=67.5°∴∠HFE==22.5°∴∠EHF=180°-67.5°-22.5°=90°
∵DH=HF,OH是△DBF的中位线∴OH∥BF∴OH=BF
②∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,
∵CE=CF,∴Rt△BCE≌Rt△DCF,∴∠EBC=∠CDF=22.5°,
∴∠BFH=90°-∠CDF=90°-22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,
∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,
∴∠HCF=90°-∠DCH=90°-22.5°=67.5°,
∴∠CHF=180°-∠HCF-∠BFH=180°-67.5°-67.5°=45°,故②正确;
③∵OH是△BFD的中位线,∴DG=CG=BC,GH=CF,∵CE=CF,∴GH=CF=CE
∵CE<CG=BC,∴GH<BC,故此结论不成立;
④∵∠DBE=45°,BE是∠DBF的平分线,∴∠DBH=22.5°,由②知∠HBC=∠CDF=22.5°,
∴∠DBH=∠CDF,∵∠BHD=∠BHD,∴△DHE∽△BHD,∴∴DH=HE•HB,故④成立;
所以①②④正确.故选C.
练习册系列答案
相关题目