题目内容

如图,直线l1:y=kx+b平行于直线y=x-1,且与直线l2y=mx+
12
相交于点P(-1,0).
(1)求直线l1、l2的解析式;
(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…
照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,Bn,An,…
①求点B1,B2,A1,A2的坐标;
②请你通过归纳得出点An、Bn的坐标;并求当动点C到达An处时,运动的总路径的长?精英家教网
分析:(1)根据直线l1:y=kx+b平行于直线y=x-1,求得k=1,再由与直线l2y=mx+
1
2
相交于点P(-1,0),分别求出b和m的值.
(2)由直线l1的解析式,求出A点的坐标,从而求出B1点的坐标,依此类推再求得A1、B2、A2的值,从而得到An、Bn,进而求出点C运动的总路径的长.
解答:解:(1)∵y=kx+b平行于直线y=x-1,
∴y=x+b
∵过P(-1,0),
∴-1+b=0,
∴b=1
∴直线l1的解析式为y=x+1;(1分)
∵点P(-1,0)在直线l2上,
-m+
1
2
=0

m=
1
2

∴直线l2的解析式为y=
1
2
x+
1
2
;(2分)

(2)①A点坐标为(0,1),
则B1点的纵坐标为1,设B1(x1,1),
1
2
x1+
1
2
=1

∴x1=1;
∴B1点的坐标为(1,1);(3分)
则A1点的横坐标为1,设A1(1,y1
∴y1=1+1=2;
∴A1点的坐标为(1,2),即(21-1,21);(4分)
同理,可得B2(3,2),A2(3,4),即(22-1,22);(6分)
②经过归纳得An(2n-1,2n),Bn(2n-1,2n-1);(7分)
当动点C到达An处时,运动的总路径的长为An点的横纵坐标之和再减去1,
即2n-1+2n-1=2n+1-2.(8分)
点评:本题考查了一次函数和几何问题的综合应用,本题中根据点的坐标求出点与点的距离是解题的基础.解答此题的关键是根据一次函数的特点,分别求出各点的坐标再计算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网