题目内容
如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90º.
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 ,数量关系为 .
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)
(3)若AC=,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
解答下列问题:
(1)如果AB=AC,∠BAC=90º.
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 ,数量关系为 .
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)
(3)若AC=,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
(1)①CF与BD位置关系是 垂 直、数量关系是相 等;
②当点D在BC的延长线上时①的结论仍成立.
由正方形ADEF得 AD="AF" ,∠DAF=90º.
∵∠BAC=90º,∴∠DAF="∠BAC" , ∴∠DAB=∠FAC,
又AB="AC" ,∴△DAB≌△FAC , ∴CF=BD
∠ACF=∠ABD.
∵∠BAC=90º, AB="AC" ,∴∠ABC=45º,∴∠ACF=45º,
∴∠BCF="∠ACB+∠ACF=" 90º.即 CF⊥BD
(2)画图正确
当∠BCA=45º时,CF⊥BD(如图丁).
理由是:过点A作AG⊥AC交BC于点G,∴AC=AG
可证:△GAD≌△CAF ∴∠ACF=∠AGD=45º
∠BCF="∠ACB+∠ACF=" 90º. 即CF⊥BD
(3)当具备∠BCA=45º时,
过点A作AQ⊥BC交BC的延长线于点Q,(如图戊)
∵DE与CF交于点P时, ∴此时点D位于线段CQ上,
∵∠BCA=45º,可求出AQ= CQ=4.设CD="x" ,∴ DQ=4—x,
容易说明△AQD∽△DCP,∴ , ∴,
.
∵0<x≤3 ∴当x=2时,CP有最大值1.
②当点D在BC的延长线上时①的结论仍成立.
由正方形ADEF得 AD="AF" ,∠DAF=90º.
∵∠BAC=90º,∴∠DAF="∠BAC" , ∴∠DAB=∠FAC,
又AB="AC" ,∴△DAB≌△FAC , ∴CF=BD
∠ACF=∠ABD.
∵∠BAC=90º, AB="AC" ,∴∠ABC=45º,∴∠ACF=45º,
∴∠BCF="∠ACB+∠ACF=" 90º.即 CF⊥BD
(2)画图正确
当∠BCA=45º时,CF⊥BD(如图丁).
理由是:过点A作AG⊥AC交BC于点G,∴AC=AG
可证:△GAD≌△CAF ∴∠ACF=∠AGD=45º
∠BCF="∠ACB+∠ACF=" 90º. 即CF⊥BD
(3)当具备∠BCA=45º时,
过点A作AQ⊥BC交BC的延长线于点Q,(如图戊)
∵DE与CF交于点P时, ∴此时点D位于线段CQ上,
∵∠BCA=45º,可求出AQ= CQ=4.设CD="x" ,∴ DQ=4—x,
容易说明△AQD∽△DCP,∴ , ∴,
.
∵0<x≤3 ∴当x=2时,CP有最大值1.
(1)首先选择图2证明,由AB=AC,∠BAC=90°,可得:△ABC是等腰直角三角形,又由四边形ADEF是正方形,易证得△ABD≌△ACF(SAS),即可求得:CF=BD,∠ACF=∠B=45°,证得CF⊥BD;
(2)过点A作AG⊥AC交BC于点G,可证△GAD≌△CAF,则∠ACF=∠AGD=45º,从而得∠BCF="∠ACB+∠ACF=" 90º, 即CF⊥BD。
(3)首先作辅助线:过点A作AG⊥BC,垂足为G,连接CF,易得:△AGD∽△DCP,由相似三角形的对应边成比例,即可求得:AG•CP=GD•DC,在等腰Rt△AGC中求得AC的值,设GD=x,即可求得CP关于x的二次函数,求得最大值.
(2)过点A作AG⊥AC交BC于点G,可证△GAD≌△CAF,则∠ACF=∠AGD=45º,从而得∠BCF="∠ACB+∠ACF=" 90º, 即CF⊥BD。
(3)首先作辅助线:过点A作AG⊥BC,垂足为G,连接CF,易得:△AGD∽△DCP,由相似三角形的对应边成比例,即可求得:AG•CP=GD•DC,在等腰Rt△AGC中求得AC的值,设GD=x,即可求得CP关于x的二次函数,求得最大值.
练习册系列答案
相关题目