题目内容
【题目】如图,△ABC的点A,C在⊙O上,⊙O与AB相交于点D,连接CD,∠A=30°,DC=.
(1)求圆心O到弦DC的距离;
(2)若∠ACB+∠ADC=180°,求证:BC是⊙O的切线.
【答案】(1);(2)详见解析
【解析】
(1)连接OD,OC,过O作OE⊥OC于E,得到△OCD是等边三角形,求得OD=OC=CD=,解直角三角形即可得到结论;
(2)由(1)得,△ODC是等边三角形,求得∠OCD=60°,根据相似三角形的性质得到∠A=∠BCD=30°,求得∠OCB=90°,于是得到BC是⊙O的切线.
解:(1)连接OD,OC,过O作OE⊥OC于E,
∵∠A=30°,
∴∠DOC=60°,
∵OD=OC,CD=,
∴△OCD是等边三角形,
∴OD=OC=CD=,
∵OE⊥DC,
∴DE=,∠DEO=90°,∠DOE=30°,
∴OE=DE=,
∴圆心O到弦DC的距离为:;
(2)由(1)得,△ODC是等边三角形,
∴∠OCD=60°,
∵∠ACB+∠ADC=180°,∠CDB+∠ADC=180°,
∴∠ACB=∠CDB,
∵∠B=∠B,
∴△ACB∽△CDB,
∴∠A=∠BCD=30°,
∴∠OCB=90°,
∴BC是⊙O的切线.
练习册系列答案
相关题目