题目内容
【题目】已知直线y=﹣x+7a+1与直线y=2x﹣2a+4同时经过点P,点Q是以M(0,﹣1)为圆心,MO为半径的圆上的一个动点,则线段PQ的最小值为( )
A.B.C.D.
【答案】C
【解析】
先解方程组得P点坐标为(3a﹣1,4a+2),则可确定点P为直线y=x+上一动点,设直线y=x+与坐标的交点为A、B,如图,则A(﹣,0),B(0,),利用勾股定理计算出AB=,过M点作MP⊥直线AB于P,交⊙M于Q,此时线段PQ的值最小,证Rt△MBP∽Rt△ABO,利用相似比计算出MP=,则PQ=,即线段PQ的最小值为.
解方程组得,
∴P点坐标为(3a﹣1,4a+2),
设x=3a﹣1,y=4a+2,
∴y=x+,
即点P为直线y=x+上一动点,
设直线y=x+与坐标的交点为A、B,如图,则A(﹣,0),B(0,),
∴AB=
过M点作MP⊥直线AB于P,交⊙M于Q,此时线段PQ的值最小.
∵∠MBP=∠ABO,
∴Rt△MBP∽Rt△ABO,
∴MP:OA=BM:AB,即MP:=:,
∴MP=,∴PQ=﹣1=,
即线段PQ的最小值为.
故选:C.
练习册系列答案
相关题目