题目内容

已知:直线y=-2x+2分别与x轴、y轴相交于点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC,∠BAC=90°,过C作CD⊥x轴于D.求:
(1)点A、B的坐标;
(2)AD的长;
(3)过A、B、C三点的抛物线的解析式;
(4)在x轴上是否存在点P,使△BCP为等腰三角形?若存在,求出所有符合条件的P点的坐标;若不存在,请说明理由.
分析:(1)由直线y=-2x+2分别与x轴、y轴相交于点A、B,令y=0求出x的值即为A的横坐标,令x=0求出y的值即为B的纵坐标,写出两点坐标即可;
(2)由三角形ABC为等腰直角三角形,可得AB=AC,∠BAC=90°,根据平角定义可得∠BAO与∠CAD互余,由直角三角形的两锐角互余可得∠BAO与∠ABO互余,根据等角的余角相等可得∠CAD与∠ABO相等,再由一对直角相等,利用AAS可得出三角形AOB与三角形ACD全等,利用全等三角形的对应边相等可得AD=OB,由B的坐标得出OB的长,即为AD的长;
(3)由三角形AOB与三角形ACD全等,得到CD=OA,由A的坐标求出OA的长,即为CD的长,即为C的纵坐标,由OA+AD得出C的横坐标,确定出C的坐标,设出抛物线的解析式为y=ax2+bx+c,把A,B及C的坐标代入得到关于a,b及c的三元一次方程组,求出方程组的解集得到a,b及c的值,即可确定出过A、B、C三点的抛物线的解析式;
(4)分三种情况考虑:当B为等腰三角形BCP的顶角顶点时,以B为圆心,BC长为半径画弧,与x轴交于两点,由勾股定理求出BC的长,即为BP的长,在直角三角形BOP中,根据勾股定理求出OP的长,即可确定出P的坐标;当C为等腰直角三角形BCP顶角顶点时,B,C,P在同一条直线上,不合题意;当P为等腰三角形顶角顶点时,P为线段BC的垂直平分线与x轴的交点,此时P与A重合,由A的坐标得到此时P的坐标,综上,得到所有满足题意的P的坐标.
解答:解:(1)直线y=-2x+2分别与x轴、y轴相交于点A、B,
令y=0得-2x+2=0,解得:x=1;
令x=0,解得y=2,
∴A(1,0),B(0,2);…(2分)

(2)∵∠BAC=90°,AB=AC,
∴∠BAO+∠CAD=90°,
又∠AOB=90°,
∴∠BAO+∠ABO=90°,
∴∠ABO=∠CAD,
在△ABO和△CAD中,
∠AOB=∠CDA=90°
∠ABO=∠CAD
AB=AC

∵△ABO≌△CAD(AAS),
∴OB=AD=2;…(4分)

(3)∵△ABO≌△CAD,
∴OA=CD=1,AD=OB=2,
∴OD=3,
∴C(3,1),…(5分)
设过A、B、C三点的抛物线的解析式为y=ax2+bx+c,
把三点坐标代入得:
a+b+c=0
c=2
9a+3b+c=1

解得
a=
5
6
b=-
17
6
c=2

y=
5
6
x2-
17
6
x+2
;…(7分)

(4)存在3个点使△BCP为等腰三角形,
①当B为顶点,BC=BP时,如图所示:

在直角三角形AOB中,OA=1,OB=2,
根据勾股定理得:AB=
OA2+OB2
=
5

∴AC=AB=
5
,又△ABC为等腰直角三角形,
∴BP=BC=
10

在直角三角形OBP1中,OP1=
BP12-OB2
=
6

同理OP2=
6

则P1(-
6
,0),P2
6
,0);
②当C为顶点,CB=CP时,P3(6,0),
此时B、C、P 在同一直线上,P3舍去;
③当P为顶点,PA=PB时,P4为线段BC垂直平分线与x轴的交点,
又∵AB=AC,此时P4与A重合,
则P4(1,0),
综上,满足题意的坐标为P1(-
6
,0),P2
6
,0),P3(1,0).…(9分)
点评:此题属于二次函数的综合题,涉及的知识有:一次函数与坐标轴的交点,利用待定系数法求二次函数的解析式,勾股定理,等腰直角三角形的性质以及线段垂直平分线的性质,利用了数形结合及分类讨论的思想,是一道综合性较强的压轴题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网