题目内容
在△ABC中,AD⊥BC于点D,∠BAC=45°,BD=3,DC=2,求△ABC的面积.
如图,把△ABD沿AB为对称轴翻折成为△ABE,△ACD沿AC为对称轴翻折成为△ACG,延长EB、GC相交于点F,
则△ABE≌△ABD,△ACD≌△ACG,
所以,AD=AE=AG,∠AEB=∠AGC=90°,
∵∠BAC=45°,
∴∠EAG=∠EAB+∠BAD+∠CAD+∠CAG=2(∠BAD+∠CAD)=2∠BAC=2×45°=90°,
∴四边形AEFG是正方形,
∵BD=3,DC=2,
∴BC=BD+CD=3+2=5,
设AD=x,则BF=EF-BE=x-3,CF=FG-CG=x-2,
在Rt△BCF中,根据勾股定理,BF2+CF2=BC2,
即(x-3)2+(x-2)2=52,
整理得,x2-5x-6=0,
解得,x1=-1(舍去),x2=6,
所以,S△ABC=
BC•AD=
×5×6=15.
则△ABE≌△ABD,△ACD≌△ACG,
所以,AD=AE=AG,∠AEB=∠AGC=90°,
∵∠BAC=45°,
∴∠EAG=∠EAB+∠BAD+∠CAD+∠CAG=2(∠BAD+∠CAD)=2∠BAC=2×45°=90°,
∴四边形AEFG是正方形,
∵BD=3,DC=2,
∴BC=BD+CD=3+2=5,
设AD=x,则BF=EF-BE=x-3,CF=FG-CG=x-2,
在Rt△BCF中,根据勾股定理,BF2+CF2=BC2,
即(x-3)2+(x-2)2=52,
整理得,x2-5x-6=0,
解得,x1=-1(舍去),x2=6,
所以,S△ABC=
1 |
2 |
1 |
2 |
练习册系列答案
相关题目