题目内容
【题目】y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,当△ABC为直角三角形时,则( )
A. ac=﹣1 B. ac=1 C. ac=±1 D. 无法确定
【答案】A
【解析】
设出A、B两点的坐标,根据根与系数的关系可得到AOBO,且OC=|c|,利用相似三角形的判定与性质可得到AO、BO、CO之间的关系,可得到ac的值.
设A(x1,0),B(x2,0),由△ABC为直角三角形可知x1、x2必异号,
∴x1x2=<0,
由于函数图象与y轴相交于C点,所以C点坐标为(0,c),
∵∠ACO+∠BCO=90, ∠ACO+∠∠CAO=90,
∴∠BCO=∠CAO,
∴△ACO∽△CBO,
∴|OC|2=|AO||BO|,即c2=|x1||x2|=||,
故|ac|=1,ac=±1,
由于<0,所以ac=﹣1.
故选:A.
练习册系列答案
相关题目