题目内容
【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.
(1)求点C的坐标(用含a的代数式表示);
(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;
(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.
【答案】(1)C(0,﹣3a);(2) y=x2﹣2x﹣3;(3) Q的坐标为(4,0)或(9,0)
【解析】试题分析:(1)由A点坐标和二次函数的对称性可求出B点的坐标为(3,0),根据两点式写出二次函数解析式,再令y=0,求出y的值,即可的点C的坐标;
(2)由A(﹣1,0),B(3,0),C(0,﹣3a),求出AB、OC的长,然后根据△ABC的面积为6,列方程求出a的值;
(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,分两种情况求解:当Rt△QGH∽Rt△GFH时,求得m的一个值;当Rt△GFH∽Rt△FCO时,求得m的另一个值.
解:(1)∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,
而抛物线与x轴的一个交点A的坐标为(﹣1,0)
∴抛物线与x轴的另一个交点B的坐标为(3,0)
设抛物线解析式为y=a(x+1)(x﹣3),
即y=ax2﹣2ax﹣3a,
当x=0时,y=﹣3a,
∴C(0,﹣3a);
(2)∵A(﹣1,0),B(3,0),C(0,﹣3a),
∴AB=4,OC=3a,
∴S△ACB=ABOC=6,
∴6a=6,解得a=1,
∴抛物线解析式为y=x2﹣2x﹣3;
(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,
∵点G与点C,点F与点A关于点Q成中心对称,
∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,
∴OF=2m+1,HF=1,
当∠CGF=90°时,
∵∠QGH+∠FGH=90°,∠QGH+∠GQH=90°,
∴∠GQH=∠HGF,
∴Rt△QGH∽Rt△GFH,
∴=,即=,解得m=9,
∴Q的坐标为(9,0);
当∠CFG=90°时,
∵∠GFH+∠CFO=90°,∠GFH+∠FGH=90°,
∴∠CFO=∠FGH,
∴Rt△GFH∽Rt△FCO,
∴=,即=,解得m=4,
∴Q的坐标为(4,0);
∠GCF=90°不存在,
综上所述,点Q的坐标为(4,0)或(9,0).