题目内容

【题目】如图1,二次函数yax22ax3aa0)的图象与x轴交于AB两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D

1)求顶点D的坐标(用含a的代数式表示);

2)若以AD为直径的圆经过点C

①求抛物线的函数关系式;

②如图2,点Ey轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点PMN分别和点OBE对应),并且点MN都在抛物线上,作MFx轴于点F,若线段MFBF12,求点MN的坐标;

③点Q在抛物线的对称轴上,以Q为圆心的圆过AB两点,并且和直线CD相切,如图3,求点Q的坐标.

【答案】(1)(1,﹣4a);(2)y=﹣x2+2x+3;M()、N();③点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2).

【解析】

分析: (1)将二次函数的解析式进行配方即可得到顶点D的坐标.

(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值.

②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.

③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD =2QG =2QB ,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.

详解:

(1)∵y=ax2﹣2ax﹣3a=ax﹣1)2﹣4a

D(1,﹣4a).

(2)①∵以AD为直径的圆经过点C

∴△ACD为直角三角形,且∠ACD=90°;

y=ax2﹣2ax﹣3a=ax﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:

AC2=9a2+9、CD2=a2+1、AD2=16a2+4

由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4

化简,得:a2=1,由a<0,得:a=﹣1,

②∵a=﹣1

∴抛物线的解析式:y=﹣x2+2x+3,D(1,4).

∵将△OBE绕平面内某一点旋转180°得到△PMN

PMx轴,且PM=OB=1;

Mx,﹣x2+2x+3),则OF=xMF=﹣x2+2x+3,BF=OF+OB=x+1;

BF=2MF

x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0

解得:x1=﹣1(舍去)、x2=.

M)、N).

③设⊙Q与直线CD的切点为G,连接QG,过CCHQDH,如下图:

C(0,3)、D(1,4),

CH=DH=1,即△CHD是等腰直角三角形,

∴△QGD也是等腰直角三角形,即:QD2=2QG2

Q(1,b),则QD=4﹣bQG2=QB2=b2+4;

得:(4﹣b2=2(b2+4),

化简,得:b2+8b﹣8=0,解得:b=﹣4±2

即点Q的坐标为(1,)或(1,).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网