题目内容
在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为( )
A、9.5 | B、10.5 | C、11 | D、15.5 |
分析:根据折叠图形的对称性,易得△EDF≌△EAF,运用中位线定理可知△AEF的周长等于△ABC周长的一半,进而△DEF的周长可求解.
解答:解:∵△EDF是△EAF折叠以后形成的图形,
∴△EDF≌△EAF,
∴∠AEF=∠DEF,
∵AD是BC边上的高,
∴EF∥CB,
又∵∠AEF=∠B,
∴∠BDE=∠DEF,
∴∠B=∠BDE,
∴BE=DE,
同理,DF=CF,
∴EF为△ABC的中位线,
∴△DEF的周长为△EAF的周长,即AE+EF+AF=
(AB+BC+AC)=
(12+10+9)=15.5.
故选D.
∴△EDF≌△EAF,
∴∠AEF=∠DEF,
∵AD是BC边上的高,
∴EF∥CB,
又∵∠AEF=∠B,
∴∠BDE=∠DEF,
∴∠B=∠BDE,
∴BE=DE,
同理,DF=CF,
∴EF为△ABC的中位线,
∴△DEF的周长为△EAF的周长,即AE+EF+AF=
1 |
2 |
1 |
2 |
故选D.
点评:本题考查了中位线定理,并涉及到图形的折叠,认识到图形折叠后所形成的图形△AEF与△DEF全等是解题的关键.
练习册系列答案
相关题目