题目内容
【题目】写出下列命题的已知、求证,并完成证明过程.
命题:如果一个三角形的两条边相等,那么两条边所对的角也相等(简称:“等边对等角”.)
已知:( ).
求证:( ).
证明:
【答案】解:已知:在△ABC中,AB=AC,
求证:∠B=∠C,
证明:过点A作AD⊥BC于D,
∴∠ADB=∠ADC=90°,
在Rt△ABD和Rt△ACD中,
∵
∴Rt△ABD≌Rt△ACD(HL),
∴∠B=∠C.
【解析】这是一道文字证明题,首先根据题设写出已知,已知:在△ABC中,AB=AC,根据结论写出求证;∠B=∠C,证明过程先过点A作AD⊥BC于D,然后利用全等三角形的判定HL定理得出Rt△ABD≌Rt△ACD,再根据全等三角形对应角相等即可。
【考点精析】通过灵活运用全等三角形的性质,掌握全等三角形的对应边相等; 全等三角形的对应角相等即可以解答此题.
练习册系列答案
相关题目
【题目】近年来,学校对“在初中数学教学时总使用计算器是否直接影响学生计算能力的发展”这一问题密切关注,为此,某校随机调查了n名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:
n名学生对这一问题的看法人数统计表
看法 | 没有影响 | 影响不大 | 影响很大 |
学生人数(人) | 40 | 60 | m |
(1)求n的值;
(2)统计表中的m=;
(3)估计该校1800名学生中认为“影响很大”的学生人数.