题目内容

【题目】已知,如图,在平面直角坐标系中,点A坐标为(﹣2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段0B于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=﹣ x2+mx+n的图象经过A,C两点.

(1)求此抛物线的函数表达式;
(2)求证:∠BEF=∠AOE;
(3)当△EOF为等腰三角形时,求此时点E的坐标;
(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的(2 +1)倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.

【答案】
(1)

解:如图①,

∵A(﹣2,0)B(0,2)

∴OA=OB=2,

∴AB2=OA2+OB2=22+22=8

∴AB=2

∵OC=AB

∴OC=2 ,即C(0,2

又∵抛物线y=﹣ x2+mx+n的图象经过A、C两点

则可得

解得

∴抛物线的表达式为y=﹣ x2 x+2


(2)

解:∵OA=OB,∠AOB=90°,∴∠BAO=∠ABO=45°

又∵∠BEO=∠BAO+∠AOE=45°+∠AOE,

∠BEO=∠OEF+∠BEF=45°+∠BEF,

∴∠BEF=∠AOE.


(3)

解:当△EOF为等腰三角形时,分三种情况讨论

①当OE=OF时,∠OFE=∠OEF=45°

在△EOF中,∠EOF=180°﹣∠OEF﹣∠OFE=180°﹣45°﹣45°=90°

又∵∠AOB=90°

则此时点E与点A重合,不符合题意,此种情况不成立.

②如图2,

当FE=FO时,

∠EOF=∠OEF=45°

在△EOF中,

∠EFO=180°﹣∠OEF﹣∠EOF=180°﹣45°﹣45°=90°

∴∠AOF+∠EFO=90°+90°=180°

∴EF∥AO,

∴∠BEF=∠BAO=45°

又∵由(2)可知,∠ABO=45°

∴∠BEF=∠ABO,

∴BF=EF,

EF=BF= OB= ×2=1

∴E(﹣1,1)

③如图③,

当EO=EF时,过点E作EH⊥y轴于点H

在△AOE和△BEF中,

∠EAO=∠FBE,EO=EF,∠AOE=∠BEF

∴△AOE≌△BEF,

∴BE=AO=2

∵EH⊥OB,

∴∠EHB=90°,

∴∠AOB=∠EHB

∴EH∥AO,

∴∠BEH=∠BAO=45°

在Rt△BEH中,∵∠BEH=∠ABO=45°

∴EH=BH=BEcos45°=2× =

∴OH=OB﹣BH=2﹣ ∴E(﹣ ,2﹣

综上所述,当△EOF为等腰三角形时,所求E点坐标为E(﹣1,1)或E(﹣ ,2﹣


(4)

解:假设存在这样的点P.

当直线EF与x轴有交点时,由(3)知,此时E(﹣ ,2﹣ ).

如图④所示,

过点E作EH⊥y轴于点H,则OH=FH=2﹣

由OE=EF,易知点E为Rt△DOF斜边上的中点,即DE=EF,

过点F作FN∥x轴,交PG于点N.

易证△EDG≌△EFN,因此SEFN=SEDG

依题意,可得

SEPF=(2 +1)SEDG=(2 +1)SEFN

∴PE:NE=(2 +1):1.

过点P作PM⊥x轴于点M,分别交FN、EH于点S、T,则ST=TM=2﹣

∵FN∥EH,

∴PT:ST=PE:NE=2 +1,

∴PT=(2 +1)ST=(2 +1)(2﹣ )=3 ﹣2;

∴PM=PT+TM=2 ,即点P的纵坐标为2

∴﹣ x2 x+2 =2

解得x1=0,x2=﹣1,

∴P点坐标为(0,2 )或(﹣1,2 ).

综上所述,在直线EF上方的抛物线上存在点P,使得△EPF的面积是△EDG面积的(2 +1)倍;

点P的坐标为(0,2 )或(﹣1,2


【解析】(1)首先求出点C的坐标,然后利用待定系数法求出抛物线的解析式;(2)利用三角形外角性质,易证∠BEF=∠AOE;(3)当△EOF为等腰三角形时,有三种情况,需要分类讨论,注意不要漏解;(4)本问关键是利用已知条件求得点P的纵坐标,要点是将△EPF与△EDG的面积之比转化为线段之比.如图④所示,首先证明点E为DF的中点,然后作x轴的平行线FN,则△EDG≌△EFN,从而将△EPF与△EDG的面积之比转化为PE:NE;过点P作x轴垂线,可依次求出线段PT、PM的长度,从而求得点P的纵坐标;最后解一元二次方程,确定点P的坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网