题目内容
【题目】已知:如图,抛物线y=﹣x2+bx+c与x轴、y轴分别相交于点A(﹣1,0)、B(0,3)两点,其顶点为D.
(1)求这条抛物线的解析式;
(2)若抛物线与x轴的另一个交点为E. 求△ODE的面积;抛物线的对称轴上是否存在点P使得△PAB的周长最短.若存在请求出P点的坐标,若不存在说明理由.
【答案】
(1)解:根据题意得 ,解得 ,
∴抛物线解析式为y=﹣x2+2x+3
(2)解:当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则E(3,0);
y=﹣(x﹣1)2+4,则D(1,4),
∴S△ODE= ×3×4=6;
连接BE交直线x=1于点P,如图,则PA=PE,
∴PA+PB=PE+PB=BE,
此时PA+PB的值最小,
易得直线BE的解析式为 y=﹣x+3.,
当x=1时,y=﹣x+3=3,
∴P(1,2).
【解析】(1)把A点和B点坐标分别代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组即可;(2)通过解方程﹣x2+2x+3=0得到E点坐标,再把一般式配成顶点式得到D点坐标,然后根据三角形面积公式计算△ODE的面积;连接BE交直线x=1于点P,如图,利用两点之间线段最短可判断此时PA+PB的值最小,然后求出BE的解析式后易得P点坐标.
【考点精析】掌握抛物线与坐标轴的交点是解答本题的根本,需要知道一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
练习册系列答案
相关题目