题目内容
【题目】如图,某校20周年校庆时,需要在草场上利用气球悬挂宣传条幅,EF为旗杆,气球从A处起飞,几分钟后便飞达C处,此时,在AF延长线上的点B处测得气球和旗杆EF的顶点E在同一直线上.
(1)已知旗杆高为12米,若在点B处测得旗杆顶点E的仰角为30°,A处测得点E的仰角为45°,试求AB的长(结果保留根号);
(2)在(1)的条件下,若∠BCA=45°,绳子在空中视为一条线段,试求绳子AC的长(结果保留根号)?
【答案】
(1)
解:∵在直角△BEF中,tan∠EBF= ,
∴BE= = =12 .
同理AF=EF=12(米),
则AB=BF+AF=12 +12(米)
(2)
解:作AG⊥BE于点G,
在直角△ABG中,AG=ABsin30°= (12 +12)=6 +6.
又∵直角△AGC中,∠ACG=45°,
∴AC= AG=6 +6 (米).
【解析】(1)在直角△BEF中首先求得BF,然后在直角△AEF中求得AF,根据AB=BF+AF即可求解;(2)作AG⊥BC于点G,在直角△ABG中首先求得AG,然后在直角△AGC中利用三角函数求解.
【考点精析】解答此题的关键在于理解关于仰角俯角问题的相关知识,掌握仰角:视线在水平线上方的角;俯角:视线在水平线下方的角.
练习册系列答案
相关题目