题目内容

【题目】如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).
(1)当t为何值时,四边形PCDQ为平行四边形?
(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.

【答案】
(1)解:∵AD∥BC,BC=20cm,AD=10cm,点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,

∴DQ=t,PC=20﹣2t,

∵若四边形PCDQ为平行四边形,则DQ=PC,

∴20﹣2t=t,

解得:t=


(2)解:线段PH的长不变,

∵AD∥BH,P、Q两点的速度比为2:1,

∴△QED∽△PEB,QD:BP=1:2,

∴QE:EP=ED:BE=1:2,

∵EF∥BH,

∴ED:DB=EF:BC=1:3,

∵BC=20,

∴EF=

=

∴PH=20cm


【解析】(1)如果四边形PCDQ为平行四边形,则DQ=CP,根据P、Q两点的运动速度,结合运动时间t,求出DQ、CP的长度表达式,解方程即可;(2)PH的长度不变,根据P、Q两点的速度比,即可推出QD:BP=1:2,根据平行线的性质推出三角形相似,得出相似比,即可推出PH=20.
【考点精析】认真审题,首先需要了解平行四边形的性质(平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分),还要掌握梯形的定义(一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯形)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网