题目内容
【题目】如图①,在平面直角坐标系中,直线y=﹣ x+ 与x轴交于C点,与y轴交于点E,点A在x轴的负半轴,以A点为圆心,AO为半径的圆与直线的CE相切于点F,交x轴负半轴于另一点B.
(1)求⊙A的半径;
(2)连BF、AE,则BF与AE之间有什么位置关系?写出结论并证明.
(3)如图②,以AC为直径作⊙O1交y轴于M,N两点,点P是弧MC上任意一点,点Q是弧PM的中点,连CP,NQ,延长CP,NQ交于D点,求CD的长.
【答案】
(1)解:连接AF,如图①a.
∵直线y=﹣ x+ 与x轴交于C点,与y轴交于E点,
∴点C的坐标为(2,0),点E的坐标为(0, ),
∴OC=2,OE= .
∵∠EOC=90°,
∴EC= = .
∵AO⊥OE,∴直线OE与⊙A相切于点O.
又∵直线CE与⊙A相切于点F,
∴∠AFC=90°,EF=OE= ,
∴FC=FE+EC= + =2 .
在Rt△AFC中,
设AF=x,则AO=x,AC=x+2.
根据勾股定理可得:x2+(2 )2=(x+2)2,
解得:x=1.
∴⊙A的半径为1
(2)解:BF∥AE.
证明:连接OF,交AE于点H,如图①b.
∵EF、EO分别与⊙A相切于点F、O,
∴EF=EO,EA平分∠FEO,
∴EA⊥OF,即∠AHO=90°.
∵BO是⊙A的直径,
∴∠BFO=90°,
∴∠BFO=∠AHO,
∴BF∥AE
(3)解:连接QC、QM、MC、NC、MO1,如图②.
∵AC是⊙O1的直径,AC⊥MN,
∴ ,
∴∠NQC=∠MNC.
∵∠MQC+∠MNC=180°,∠DQC+∠NQC=180°,
∴∠MQC=∠DQC.
∵点Q是 的中点,
∴∠MCQ=∠PCQ.
在△MCQ和△DCQ中,
,
∴△MCQ≌△DCQ(ASA),
∴MC=DC.
∵OA=1,OC=2,
∴AC=3,AO1= ,OO1= ,
在Rt△MOO1中,
MO1=AO1= ,OO1= ,
∴MO= = .
在Rt△MOC中,
MC= = ,
∴DC= .
∴CD的长为
【解析】(1)连接AF,如图①a,由直线EC的解析式可求出OE、OC的长,根据勾股定理可求出EC的长,然后根据切线长定理可求出EF的长,然后在Rt△AFC中运用勾股定理就可求出圆的半径.(2)连接OF,交AE于点H,如图①b,根据切线长定理可得EF=EO,EA平分∠FEO,根据等腰三角形的性质可得∠AHO=90°,由BO是⊙A的直径可得∠BFO=90°,从而得到∠BFO=∠AHO,即可得到BF∥AE.(3)连接QC、QM、MC、NC、MO1 , 如图②,易证△MCQ≌△DCQ,则有MC=DC.在Rt△MOO1中,运用勾股定理可求出MO的长,然后在Rt△MOC中,运用勾股定理就可求出MC,即可得到CD的长.
【考点精析】解答此题的关键在于理解平行线的判定的相关知识,掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,以及对勾股定理的概念的理解,了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.