题目内容

如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A.与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.

(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;
(3)若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积.(结果保留π)
(1)BC所在直线与小圆相切,理由见试题解析;(2)BC=AD+AC,理由见试题解析;(3)16cm2

试题分析:(1)只要证明OE垂直BC即可得出BC是小圆的切线,即与小圆的关系是相切;
(2)利用全等三角形的判定得出Rt△OAD≌Rt△OEB,从而得出EB=AD,从而得到三者的关系是前两者的和等于第三者;
(3)根据大圆的面积减去小圆的面积即可得到圆环的面积.
试题解析:(1)BC所在直线与小圆相切.
理由如下:过圆心O作OE⊥BC,垂足为E;∵AC是小圆的切线,AB经过圆心O,∴OA⊥AC;又∵CO平分∠ACB,OE⊥BC,∴OE=OA,∴BC所在直线是小圆的切线;
(2)AC+AD=BC.理由如下:
连接OD.∵AC切小圆O于点A,BC切小圆O于点E,∴CE=CA;∵在Rt△OAD与Rt△OEB中,,∴Rt△OAD≌Rt△OEB(HL),∴EB=AD;∵BC=CE+EB,∴BC=AC+AD;
(3)∵∠BAC=90°,AB=8cm,BC=10cm,∴AC=6cm;∵BC=AC+AD,∴AD=BC﹣AC=4cm,∵圆环的面积为:S=π(OD)2﹣π(OA)2=π(OD2﹣OA2),又∵OD2﹣OA2=AD2,∴S=42π=16π(cm2).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网