题目内容

如图,在矩形ABCD中,已知边AB、BC的长恰为关于x的一元二次方程x2-(m-2)x+3m=0的两根.动点P、Q分别从点B、C出发,其中,点P以每秒a个单位的速度,沿B→C的路线向点C运动;点Q以每秒3个单位的速度,沿C→D的路线向点D运动.若P、Q两点同时出发,运动时间为t(s)(t>0),且当t=2时,P、Q两点恰好同时到达目的地.
(1)求m、a的值;精英家教网
(2)是否存在这样的t,使得△APQ为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
(3)若在动点P、Q从起点出发的同时,另有M、N两点同时从点A出发,其中,点M以每秒2个单位的速度,沿A→D的路线向点D运动;点N以每秒1个单位的速度,沿A→B的路线向点B运动.问:是否存在这样的t,使得四边形PQMN为平行四边形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.若将“平行四边形”改为“梯形”,结果又如何?
分析:(1)由点Q以3cm/s的速度,沿C→D的路线向点D运动,运动时间为t=2,可得AB=CD=6,代入x2-(m-2)x+3m=0求解即可;
(2)要使△APQ的外心在△APQ的某一边上,则△APQ为直角三角形;显然∠PAQ不可能为直角.分别从∠APQ=90°与∠AQP=90°分析,易得相似三角形,根据相似三角形的对应边成比例,即可求得t的值.
(3)采用逆向证明法.当若MN∥PQ时,由相似三角形△AMN∽△CPQ的对应边成比例解得t=
4
5
;若MQ∥NP时,由相似三角形△DMQ∽△BPN的对应边成比例解得7t2-22t+24=0,然后解方程知,MQ与NP不可能相互平行,即不存在这样的t,使得四边形PQMN为平行四边形.
解答:解:(1)由已知得CD=6,
∴AB=6.把x=6代入方程x2-(m-2)x+3m=0得m=16.(1分)
把m=16代入原方程,解得x1=6,x2=8,
∴BC=8.(2分)
∴点P的运动速度a=8÷2=4(cm/s).(3分)

(2)存在这样的t,使得△APQ为直角三角形.理由如下:
显然∠PAQ不可能为直角.
若∠APQ=90°,则△ABP∽△PCQ,
AB
BP
=
PC
CQ
.即
6
4t
=
8-4t
3t
,解得t=
7
8

若∠AQP=90°,同理求得t=2或t=
32
9
精英家教网
经检验,t=
32
9
不合题意,舍去,
∴t=2.
综上所述,当t=
7
8
和t=2时△APQ为直角三角形;


(3)若MN∥PQ,则可得△AMN∽△CPQ,
AM
AN
=
CP
CQ
,即
2t
t
=
8-4t
3t
,解得t=
4
5
.(8分)
若MQ∥NP,则可得△DMQ∽△BPN,
DM
DQ
=
BP
BN
,即
8-2t
6-3t
=
4t
6-t
,即7t2-22t+24=0.
由于△<0,所以这个方程无实根.(9分),
∴MQ与NP不可能相互平行.
∴不存在这样的t,使得四边形PQMN为平行四边形.(10分)
当t=
4
5
时,四边形PQMN为梯形.(11分)
点评:此题考查了一元二次方程的应用,以及相似三角形的判定与性质和圆的外心的性质.解此题的关键要抓住不变量,还要注意利用分类讨论的思想.解题时还要注意数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网