题目内容
【题目】已知:a是﹣1,且a、b、c满足(c﹣6)2+|2a+b|=0,请回答问题:
(1)请直接写出b、c的值:b= , c=
(2)在数轴上,a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,
(a)当点P在AB间运动(不包括A、B),试求出P点与A、B、C三点的距离之和.
(b)当点P从A点出发,向右运动,请根据运动的不同情况,化简式子:|x+1|﹣|x﹣2|+2|x﹣6|(请写出化简过程)
【答案】
(1)2;6
(2)解:①∵PA=x﹣(﹣1)=x+1,PB=2﹣x,PC=6﹣x,
∴PA+PB+PC=x+1+2﹣x+6﹣x=9﹣x;|x+1|﹣|x﹣2|+2|x﹣6|(
②当﹣1≤x<2时,原式=x+1+x﹣2﹣2(x﹣6)=11;
当2≤x<6时,原式=x+1﹣(x﹣2)﹣2(x﹣6)=﹣2x+15;
当x≥6时,原式=x+1﹣(x﹣2)+2(x﹣6)=2x﹣9
【解析】解:(1)∵(c﹣6)2+|2a+b|=0,
∴c=6,2a+b=0,即b=﹣2a,
又∵a=﹣1,
∴b=2,
所以答案是:2,6;
【考点精析】本题主要考查了数轴和整式加减法则的相关知识点,需要掌握数轴是规定了原点、正方向、单位长度的一条直线;整式的运算法则:(1)去括号;(2)合并同类项才能正确解答此题.
练习册系列答案
相关题目