题目内容
【题目】已知二次函数y=ax2+bx+c(a≠0)的图像如图所示,则下列五个结论中:①albic<0;②a﹣b+c>0;③2a﹣b<0;④abc<0;⑤4a+2b+c>0,错误的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】B
【解析】
分别结合图象判定出x=1,﹣1,2时对应y的值,再利用对称轴位置以及抛物线与坐标轴交点得出答案.
解:如图所示:当x=1时,y=a+b+c<0,故①a+b+c<0正确;
当x=﹣1时,y=a+b+c<0,故②a﹣b+c>0,错误;
∵抛物线开口向下,
∴a<0,
∵﹣>﹣1,
∴<1,
∴b>2a,
即2a﹣b<0,故选项③正确;
∵0>﹣>﹣1,
∴b<0,
∵抛物线与y轴交与负半轴,
∴c<0,
∴abc<0,
故选项④正确;
当x=2时,y=4a+2b+c<0,故选项⑤错误;
故错误的有2个.
故选B.
练习册系列答案
相关题目