题目内容

【题目】在△ABC中,P为边AB上一点.

(1)如图1,若∠ACP=∠B,求证:AC2=APAB;
(2)若M为CP的中点,AC=2.
①如图2,若∠PBM=∠ACP,AB=3,求BP的长;
②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.

【答案】
(1)

解:∵∠ACP=∠B,∠A=∠A,

∴△ACP∽△ABC,

∴AC2=APAB


(2)

解:①取AP在中点G,连接MG,

设AG=x,则PG=x,BG=3﹣x,

∵M是PC的中点,

∴MG∥AC,

∴∠BGM=∠A,

∵∠ACP=∠PBM,

∴△APC∽△GMB,

∴x=

∵AB=3,

∴AP=3﹣

∴PB=

②过C作CH⊥AB于H,延长AB到E,使BE=BP,

设BP=x.

∵∠ABC=45°,∠A=60°,

∴CH= ,HE= +x,

∵CE2= +( +x)2

∵PB=BE,PM=CM,

∴BM∥CE,

∴∠PMB=∠PCE=60°=∠A,

∵∠E=∠E,

∴△ECP∽△EAC,

∴CE2=EPEA,

∴3+3+x2+2 x=2x(x+ +1),

∴x= ﹣1,

∴PB= ﹣1.


【解析】(1)根据相似三角形的判定定理即可得到结论;(2)①取AP在中点G,连接MG,设AG=x,则PG=x,BG=3﹣x,根据三角形的中位线的性质得到MG∥AC,由平行线的性质得到∠BGM=∠A,∵∠根据相似三角形的性质得到 ,求得x= ,即可得到结论;②过C作CH⊥AB于H,延长AB到E,使BE=BP解直角三角形得到CH= ,HE= +x,根据勾股定理得到CE2= +9 +x)2根据相似三角形的性质得到CE2=EPEA列方程即可得到结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网