题目内容
【题目】如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.
(1)求双曲线的解析式;
(2)求点C的坐标,并直接写出y1<y2时x的取值范围.
【答案】(1);(2)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<2.
【解析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=2x﹣2,可得A的坐标,从而得双曲线的解析式;
(2)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.
(1)∵点A在直线y1=2x﹣2上,
∴设A(x,2x﹣2),
过A作AC⊥OB于C,
∵AB⊥OA,且OA=AB,
∴OC=BC,
∴AC=OB=OC,
∴x=2x﹣2,
x=2,
∴A(2,2),
∴k=2×2=4,
∴;
(2)∵,解得:,,
∴C(﹣1,﹣4),
由图象得:y1<y2时x的取值范围是x<﹣1或0<x<2.
练习册系列答案
相关题目