题目内容
【题目】如图①,抛物线交正半轴于点,将抛物线先向右平移个单位,再向下平移个单位得到抛物线,与交于点,直线交于点.
(1)求抛物线的解析式;
(2)点是抛物线上(含端点)间的一点,作轴交抛物线于点,连按,.当的面积为时, 求点的坐标;
(3)如图②,将直线向上平移,交抛物线于点、,交抛物线于点、,试判断的值是否为定值,并说明理由.
【答案】(1);(2)点的坐标为(4,0)或(5,5);(3)的值的定值,理由见解析.
【解析】
(1)先将抛物线M1:y=x2-4x化为顶点式,由平移规律“上加下减,左加右减”可直接写出抛物线M2的解析式;
(2) 分别求出点A,点B,点C的坐标,求出m的取值范围,再用含m的代数式表示出△CPQ的面积,可用函数的思想求出其最大值;
(3) 设将直线OB向上平移k个单位长度得到直线EH,分别求出点E,F,G,H的横坐标,分别过G,H作y轴的平行线,过E,F作x轴的平行线,构造全等三角形△GEM与△HFN,可通过全等三角形的性质求出的值为定值1.
(1)
将其先向右平移个单位,再向上平移3个单位的解析式为:
(2)抛物线与交于点
解得,
将点代入
得,
抛物线与直线交于点
解得,,,
设点的坐标为,则,
即:
解得:,
在中
当时,,,
在中
根据二次函数的图象及性质可知
当时,有最大值,最大值为
(3)的值的定值,理由如下:
设直线向下平移个单位长度得到直线
则
令
解得,,
,
令
解得,,
,
分别过,作轴的平行线,过,作轴的平行线,交点分别为,,,如下图所示:
则,
的值的定值是
【题目】如图,ABCD中,∠A=45°,连接BD,且BD⊥AD,点E、点F分别是AB、CD上的点,连接EF交BD于点O,且EF⊥CD,BE=DF=1.
(1)求EF的长;
(2)直接写出ABCD的面积 .
【题目】某年级共有150名女生,为了解该校女生实心球成绩(单位:米)和仰卧起坐(单位:个)的情况,从中随机抽取30名女生进行测试,获得了她们的相关成绩,并对数据进行整理、描述和分析,下面给出了部分信息.
.实心球成绩的频数分布表如下:
分组 | 6.2≤<6.6 | 6.6≤<7.0 | 7.0≤<7.4 | 7.4≤<7.8 | 7.8≤<8.2 | 8.2≤<8.6 |
频数 | 2 | 10 | 6 | 2 | 1 |
.实心球成绩在7.0≤<7.4.这组的是:
7.0 | 7.0 | 7.0 | 7.1 | 7.1 | 7.2 | 7.2 | 7.3 | 7.3 |
.一分钟仰卧起坐成绩如图所示:
根据以上信息,回答下列问题:
(1)①表中m的值为 ;
②抽取学生一分钟仰卧起坐成绩的中位数为 个;
(2)若实心球成绩达到7.2米及以上,成绩记为优秀,请估计全年级女生成绩达到优秀的人数.
(3)该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如下:
女生代码 | A | B | C | D | E | F | G | H |
实心球 | 8.1 | 7.7 | 7.5 | 7.5 | 7.3 | 7.2 | 7.0 | 6.5 |
一分钟仰卧起坐 | * | 42 | 47 | * | 47 | 52 | * | 49 |
其中有2名女生的一分钟仰卧起坐成绩未抄录完整,当老师说这8名女生恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.