题目内容
【题目】如图,EF∥CD,∠1+∠2=180°.
(1)判断DG与AC的位置关系,并说明理由;
(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.
【答案】(1)AC∥DG.理由见解析;(2)80°
【解析】
(1)根据平行线的性质即可得出∠1+∠ACD=180°,再根据条件∠1+∠2=180°,即可得到∠ACD=∠2,进而判定AC∥DG.
(2)根据平行线的性质,得到∠BDG=∠A=40°,根据三角形外角性质,即可得到∠ACD=∠BDC-∠A=40°,再根据角平分线的定义,即可得出∠ACB的度数.
(1)AC∥DG.
理由:∵EF∥CD,
∴∠1+∠ACD=180°,
又∵∠1+∠2=180°,
∴∠ACD=∠2,
∴AC∥DG.
(2)∵AC∥DG,
∴∠BDG=∠A=40°,
∵DG平分∠CDB,
∴∠CDB=2∠BDG=80°,
∵∠BDC是△ACD的外角,
∴∠ACD=∠BDC-∠A=80°-40°=40°,
∵CD平分∠ACB,
∴∠ACB=2∠ACD=80°.
练习册系列答案
相关题目
【题目】某手机专营店代理销售A、B两种型号手机.手机的进价、售价如下表:
型号 | A | B |
进价 | 1800元/部 | 1500元/部 |
售价 | 2070元/部 | 1800元/部 |
(1)第一个月:用54000元购进A、B两种型号的手机,全部售完后获利9450元,求第一个月购进A、B两种型号手机的数量;
(2)第二个月:计划购进A、B两种型号手机共34部,且不超出第一个月购进A、B两种型号的手机总费用,则A型号手机最多能购多少部?