题目内容
【题目】如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动.设点P运动的时间为ts.
(1)当P异于A.C时,请说明PQ∥BC;
(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?
【答案】解:(1)∵四边形ABCD是菱形,且菱形ABCD的边长为2,
∴AB=BC=2,∠BAC=∠DAB。
又∵∠DAB=60°,∴∠BAC=∠BCA=30°。
如图1,连接BD交AC于O。
∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC。
∴OB=AB=1。∴OA=,AC=2OA=2。
运动ts后,AP=t,AO=t,∴。
又∵∠PAQ=∠CAB,∴△PAQ∽△CAB.∴∠APQ=∠ACB.
∴PQ∥BC.
(2)如图2,⊙P与BC切于点M,连接PM,则PM⊥BC。
在Rt△CPM中,∵∠PCM=30°,∴PM=。
由PM=PQ=AQ=t,即=t,解得t=,
此时⊙P与边BC有一个公共点。
如图3,⊙P过点B,此时PQ=PB,
∵∠PQB=∠PAQ+∠APQ=60°
∴△PQB为等边三角形。∴QB=PQ=AQ=t。∴t=1。
∴当时,⊙P与边BC有2个公共点。
如图4,
⊙P过点C,此时PC=PQ,即=t
∴t=。
∴当1≤t≤时,⊙P与边BC有一个公共点。
当点P运动到点C,即t=2时,Q、B重合,⊙P过点B,
此时,⊙P与边BC有一个公共点。
综上所述,当t=或1≤t≤或t=2时,⊙P与菱形ABCD的边BC有1个公共点;当时,⊙P与边BC有2个公共点。
【解析】
直线与圆的位置关系,菱形的性质,含30°角直角三角形的性质,相似三角形的判定和性质,平行的判定,切线的性质,等边三角形的判定和性质。
(2)分⊙P与BC切于点M,⊙P过点B,⊙P过点C和点P运动到点C四各情况讨论即可。