题目内容
如图,在Rt△ABC中∠ABC=90°,AC的垂直平分线交BC于D点,交AC于E点,OC=OD.
(1)若,DC=4,求AB的长;
(2)连接BE,若BE是△DEC的外接圆的切线,求∠C的度数.
解:(1)∵AC的垂直平分线交BC于D点,交AC于E点,
∴∠DEC=90°,AE=EC,
∵∠ABC=90°,∠C=∠C,
∴∠A=∠CDE,△ABC∽△DEC,
∴sin∠CDE=,AB:AC=DE:DC,
∵DC=4,
∴EC=3,
∴DE==,
∴AC=6,
∴AB:6=:4,
∴AB=;
(2)连接OE,
∵∠DEC=90°,
∴∠EDC+∠C=90°,
∵BE是⊙O的切线,
∴∠BEO=90°,
∴∠EOB+∠EBC=90°,
∵E是AC的中点,∠ABC=90°,
∴BE=EC,
∴∠EBC=∠C,
∴∠EOB=∠EDC,
又∵OE=OD,
∴△DOE是等边三角形,
∴∠EDC=60°,
∴∠C=30°.
分析:(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易证,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;
(2)连接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切线,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜边上的中线,那么BE=CE,于是∠EBC=∠C,从而有∠EOB=∠EDC,又OE=OD,易证△DEO是等边三角形,那么∠EDC=60°,从而可求∠C.
点评:本题考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质.解题的关键是连接OE,构造直角三角形.
∴∠DEC=90°,AE=EC,
∵∠ABC=90°,∠C=∠C,
∴∠A=∠CDE,△ABC∽△DEC,
∴sin∠CDE=,AB:AC=DE:DC,
∵DC=4,
∴EC=3,
∴DE==,
∴AC=6,
∴AB:6=:4,
∴AB=;
(2)连接OE,
∵∠DEC=90°,
∴∠EDC+∠C=90°,
∵BE是⊙O的切线,
∴∠BEO=90°,
∴∠EOB+∠EBC=90°,
∵E是AC的中点,∠ABC=90°,
∴BE=EC,
∴∠EBC=∠C,
∴∠EOB=∠EDC,
又∵OE=OD,
∴△DOE是等边三角形,
∴∠EDC=60°,
∴∠C=30°.
分析:(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易证,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;
(2)连接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切线,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜边上的中线,那么BE=CE,于是∠EBC=∠C,从而有∠EOB=∠EDC,又OE=OD,易证△DEO是等边三角形,那么∠EDC=60°,从而可求∠C.
点评:本题考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质.解题的关键是连接OE,构造直角三角形.
练习册系列答案
相关题目